Geometry-driven Mass Transport Dynamics within Permeable 3D-Microstructures fabricated by Two-Photon Polymerization with Y-shaped Triphenylamines initiators.

Rana Mhanna¹, Ruchun Zhou², Ming Jin², Haiyan Pan², Decheng Wan², Davy-Louis Versace³, Nelly Hobeïka¹, Olivier Soppera¹, Patrick Lamielle¹, Jean-Pierre Malval¹.

¹ Institut de Science des Matériaux de Mulhouse CNRS-UMR 7361, Université de Haute Alsace, 68057, France.
² Department of Polymer Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai, 201804, P.R. China.
³ Institut de Chimie et des Matériaux Paris-Est, UMR-CNRS 7182, Equipe Systèmes Polymères Complexes, 94320 Thiais, France.
(jean-pierre.malval@uha.fr)

Two-photon stereolithography (TPS) is a layer-by-layer assembly technique that has proved to be a powerful tool for the fabrication of intricate 3D microstructures with very high spatial resolution[1]. Due to TPS numerous and versatile applications, the conception of two-photon active materials according to the established structure-property relationships[2–4] has gained great interest recently.

In line with these structure-property relationships, we have elaborated a series of multi-branched triphenylamines photoinitiators[5–6] which incorporate an electron donor group (triphenylamine) decorated with electron acceptor group (ketone) and with substituents such as anisole and thioanisole. We describe herein the one-photon and two-photon photophysical properties of these chromophores, their photopolymerization efficiency as well as their applications, in particular in two-photon stereolithography. Of particular interest, we demonstrate a luminescence ON-OFF process controlled by quenching diffusion dynamics which can be modulated by the geometry and topology of the permeable 3D microstructures.

References